Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577979

RESUMEN

Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.


Asunto(s)
Precursores del ARN , Transcripción Genética , Animales , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN , Intrones/genética , Mamíferos/genética
2.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell ; 84(8): 1541-1555.e11, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503286

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS subunit biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared with nuclear mRNAs, mt-mRNAs were produced 1,100-fold more, degraded 7-fold faster, and accumulated to 160-fold higher levels. Quantitative modeling and depletion of mitochondrial factors LRPPRC and FASTKD5 identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.


Asunto(s)
Mitocondrias , Ribosomas Mitocondriales , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Ribosomas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Fosforilación Oxidativa , Proteínas Mitocondriales/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
4.
Nat Struct Mol Biol ; 31(3): 568-577, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38347148

RESUMEN

Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Humanos , ADN Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Mitocondrias/metabolismo
5.
J Biol Chem ; 299(11): 105289, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37748648

RESUMEN

Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.


Asunto(s)
Regiones no Traducidas 3' , ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcripción Genética , Regiones no Traducidas 3'/genética , Poliadenilación , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Mutación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Cell Biol ; 25(11): 1575-1589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770567

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells requiring coordinated gene expression across organelles. To identify genes involved in dual-origin protein complex synthesis, we performed fluorescence-activated cell-sorting-based genome-wide screens analysing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of Complex IV. We identified genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6. We found that PREPL specifically impacts Complex IV biogenesis by acting at the intersection of mitochondrial lipid metabolism and protein synthesis, whereas NME6, an uncharacterized nucleoside diphosphate kinase, controls OXPHOS biogenesis through multiple mechanisms reliant on its NDPK domain. Firstly, NME6 forms a complex with RCC1L, which together perform nucleoside diphosphate kinase activity to maintain local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Secondly, NME6 modulates the activity of mitoribosome regulatory complexes, altering mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression.


Asunto(s)
ADN Mitocondrial , Nucleósido-Difosfato Quinasa , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Regulación de la Expresión Génica , Fosforilación Oxidativa , Nucleósido-Difosfato Quinasa/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
7.
Dev Cell ; 58(20): 2112-2127.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37586368

RESUMEN

Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with ß-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Diferenciación Celular , Ciclo Celular , Transcripción Genética , Proteínas Nucleares/metabolismo , Factores de Elongación Transcripcional/genética
8.
Genome Biol ; 24(1): 160, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415181

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are abundant noncoding RNAs best known for their involvement in ribosomal RNA maturation. In mammals, most expressed snoRNAs are embedded in introns of longer genes and produced through transcription and splicing of their host. Intronic snoRNAs were long viewed as inert passengers with little effect on host expression. However, a recent study reported a snoRNA influencing the splicing and ultimate output of its host gene. Overall, the general contribution of intronic snoRNAs to host expression remains unclear. RESULTS: Computational analysis of large-scale human RNA-RNA interaction datasets indicates that 30% of detected snoRNAs interact with their host transcripts. Many snoRNA-host duplexes are located near alternatively spliced exons and display high sequence conservation suggesting a possible role in splicing regulation. The study of the model SNORD2-EIF4A2 duplex indicates that the snoRNA interaction with the host intronic sequence conceals the branch point leading to decreased inclusion of the adjacent alternative exon. Extended SNORD2 sequence containing the interacting intronic region accumulates in sequencing datasets in a cell-type-specific manner. Antisense oligonucleotides and mutations that disrupt the formation of the snoRNA-intron structure promote the splicing of the alternative exon, shifting the EIF4A2 transcript ratio away from nonsense-mediated decay. CONCLUSIONS: Many snoRNAs form RNA duplexes near alternative exons of their host transcripts, placing them in optimal positions to control host output as shown for the SNORD2-EIF4A2 model system. Overall, our study supports a more widespread role for intronic snoRNAs in the regulation of their host transcript maturation.


Asunto(s)
Empalme del ARN , ARN Nucleolar Pequeño , Animales , Humanos , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Intrones , Emparejamiento Base , ARN no Traducido/metabolismo , Mamíferos/genética
9.
Nat Struct Mol Biol ; 30(8): 1064-1076, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443198

RESUMEN

Combinatorially, intron excision within a given nascent transcript could proceed down any of thousands of paths, each of which would expose different dynamic landscapes of cis-elements and contribute to alternative splicing. In this study, we found that post-transcriptional multi-intron splicing order in human cells is largely predetermined, with most genes spliced in one or a few predominant orders. Strikingly, these orders were conserved across cell types and stages of motor neuron differentiation. Introns flanking alternatively spliced exons were frequently excised last, after their neighboring introns. Perturbations to the spliceosomal U2 snRNA altered the preferred splicing order of many genes, and these alterations were associated with the retention of other introns in the same transcript. In one gene, early removal of specific introns was sufficient to induce delayed excision of three proximal introns, and this delay was caused by two distinct cis-regulatory mechanisms. Together, our results demonstrate that multi-intron splicing order in human cells is predetermined, is influenced by a component of the spliceosome and ensures splicing fidelity across long pre-mRNAs.


Asunto(s)
Precursores del ARN , Empalme del ARN , Humanos , Intrones/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , Empalme Alternativo/genética , Empalmosomas/genética , Empalmosomas/metabolismo
10.
medRxiv ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945604

RESUMEN

The controlled release of promoter-proximal paused RNA polymerase II (Pol II) into productive elongation is a major step in gene regulation. However, functional analysis of Pol II pausing is difficult because factors that regulate pause release are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H , which encodes SPT5, in individuals with ß-thalassemia unlinked to HBB mutations. During erythropoiesis in healthy human cells, cell cycle genes were highly paused at the transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, Pol II pause release was globally disrupted, and the transition from progenitors to precursors was delayed, marked by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, revealing a role for Pol II pausing in the temporal coordination between the cell cycle and differentiation.

11.
bioRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36824735

RESUMEN

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.

12.
bioRxiv ; 2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36798306

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) complexes are assembled from proteins encoded by both nuclear and mitochondrial DNA. These dual-origin enzymes pose a complex gene regulatory challenge for cells, in which gene expression must be coordinated across organelles using distinct pools of ribosomes. How cells produce and maintain the accurate subunit stoichiometries for these OXPHOS complexes remains largely unknown. To identify genes involved in dual-origin protein complex synthesis, we performed FACS-based genome-wide screens analyzing mutant cells with unbalanced levels of mitochondrial- and nuclear-encoded subunits of cytochrome c oxidase (Complex IV). We identified novel genes involved in OXPHOS biogenesis, including two uncharacterized genes: PREPL and NME6 . We found that PREPL specifically regulates Complex IV biogenesis by interacting with mitochondrial protein synthesis machinery, while NME6, an uncharacterized nucleoside diphosphate kinase (NDPK), controls OXPHOS complex biogenesis through multiple mechanisms reliant on its NDPK domain. First, NME6 maintains local mitochondrial pyrimidine triphosphate levels essential for mitochondrial RNA abundance. Second, through stabilizing interactions with RCC1L, NME6 modulates the activity of mitoribosome regulatory complexes, leading to disruptions in mitoribosome assembly and mitochondrial RNA pseudouridylation. Taken together, we propose that NME6 acts as a link between compartmentalized mitochondrial metabolites and mitochondrial gene expression. Finally, we present these screens as a resource, providing a catalog of genes involved in mitonuclear gene regulation and OXPHOS biogenesis.

13.
bioRxiv ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38187631

RESUMEN

During eukaryotic transcription, RNA polymerases must initiate and pause within a crowded, complex environment, surrounded by nucleosomes and other transcriptional activity. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address these limitations, we employed long-read chromatin fiber sequencing (Fiber-seq) to visualize RNA polymerases within their native chromatin context at single-molecule and near single-nucleotide resolution along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of single-molecule RNA Polymerase (Pol) II and III transcription associated footprints, which, in aggregate, mirror bulk short-read sequencing-based measurements of transcription. We show that Pol II pausing destabilizes downstream nucleosomes, with frequently paused genes maintaining a short-term memory of these destabilized nucleosomes. Furthermore, we demonstrate pervasive direct coordination and anti-coordination between nearby Pol II genes, Pol III genes, transcribed enhancers, and insulator elements. This coordination is largely limited to spatially organized elements within 5 kb of each other, implicating short-range chromatin environments as a predominant determinant of coordinated polymerase initiation. Overall, transcription initiation reshapes surrounding nucleosome architecture and coordinates nearby transcriptional machinery along individual chromatin fibers.

14.
Genome Biol ; 23(1): 170, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945592

RESUMEN

BACKGROUND: Oxidative phosphorylation (OXPHOS) complexes consist of nuclear and mitochondrial DNA-encoded subunits. Their biogenesis requires cross-compartment gene regulation to mitigate the accumulation of disproportionate subunits. To determine how human cells coordinate mitochondrial and nuclear gene expression processes, we tailored ribosome profiling for the unique features of the human mitoribosome. RESULTS: We resolve features of mitochondrial translation initiation and identify a small ORF in the 3' UTR of MT-ND5. Analysis of ribosome footprints in five cell types reveals that average mitochondrial synthesis levels correspond precisely to cytosolic levels across OXPHOS complexes, and these average rates reflect the relative abundances of the complexes. Balanced mitochondrial and cytosolic synthesis does not rely on rapid feedback between the two translation systems, and imbalance caused by mitochondrial translation deficiency is associated with the induction of proteotoxicity pathways. CONCLUSIONS: Based on our findings, we propose that human OXPHOS complexes are synthesized proportionally to each other, with mitonuclear balance relying on the regulation of OXPHOS subunit translation across cellular compartments, which may represent a proteostasis vulnerability.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , ADN Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Biosíntesis de Proteínas
15.
Elife ; 112022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575476

RESUMEN

Understanding the complex network that regulates transcription elongation requires the quantitative analysis of RNA polymerase II (Pol II) activity in a wide variety of regulatory environments. We performed native elongating transcript sequencing (NET-seq) in 41 strains of Saccharomyces cerevisiae lacking known elongation regulators, including RNA processing factors, transcription elongation factors, chromatin modifiers, and remodelers. We found that the opposing effects of these factors balance transcription elongation and antisense transcription. Different sets of factors tightly regulate Pol II progression across gene bodies so that Pol II density peaks at key points of RNA processing. These regulators control where Pol II pauses with each obscuring large numbers of potential pause sites that are primarily determined by DNA sequence and shape. Antisense transcription varies highly across the regulatory landscapes analyzed, but antisense transcription in itself does not affect sense transcription at the same locus. Our findings collectively show that a diverse array of factors regulate transcription elongation by precisely balancing Pol II activity.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Secuencia de Bases , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Factores de Elongación Transcripcional/genética
16.
Mol Biol Cell ; 32(19): 1800-1806, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191586

RESUMEN

Heat shock factor 1 (Hsf1) activation is responsible for increasing the abundance of protein-folding chaperones and degradation machinery in response to proteotoxic conditions that give rise to misfolded or aggregated proteins. Here we systematically explored the link between concurrent protein synthesis and proteotoxic stress in the budding yeast, Saccharomyces cerevisiae. Consistent with prior work, inhibiting protein synthesis before inducing proteotoxic stress prevents Hsf1 activation, which we demonstrated across a broad array of stresses and validate using orthogonal means of blocking protein synthesis. However, other stress-dependent transcription pathways remained activatable under conditions of translation inhibition. Titrating the protein denaturant ethanol to a higher concentration results in Hsf1 activation in the absence of translation, suggesting extreme protein-folding stress can induce proteotoxicity independent of protein synthesis. Furthermore, we demonstrate this connection under physiological conditions where protein synthesis occurs naturally at reduced rates. We find that disrupting the assembly or subcellular localization of newly synthesized proteins is sufficient to activate Hsf1. Thus, new proteins appear to be especially sensitive to proteotoxic conditions, and we propose that their aggregation may represent the bulk of the signal that activates Hsf1 in the wake of these insults.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Estrés Oxidativo , Biosíntesis de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Cicloheximida/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas de Unión al ADN/metabolismo , Etanol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Leupeptinas/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Proteostasis/efectos de los fármacos , Proteostasis/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
17.
Genes Dev ; 35(9-10): 698-712, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888559

RESUMEN

Histone chaperones are critical for controlling chromatin integrity during transcription, DNA replication, and DNA repair. Three conserved and essential chaperones, Spt6, Spn1/Iws1, and FACT, associate with elongating RNA polymerase II and interact with each other physically and/or functionally; however, there is little understanding of their individual functions or their relationships with each other. In this study, we selected for suppressors of a temperature-sensitive spt6 mutation that disrupts the Spt6-Spn1 physical interaction and that also causes both transcription and chromatin defects. This selection identified novel mutations in FACT. Surprisingly, suppression by FACT did not restore the Spt6-Spn1 interaction, based on coimmunoprecipitation, ChIP, and mass spectrometry experiments. Furthermore, suppression by FACT bypassed the complete loss of Spn1. Interestingly, the FACT suppressor mutations cluster along the FACT-nucleosome interface, suggesting that they alter FACT-nucleosome interactions. In agreement with this observation, we showed that the spt6 mutation that disrupts the Spt6-Spn1 interaction caused an elevated level of FACT association with chromatin, while the FACT suppressors reduced the level of FACT-chromatin association, thereby restoring a normal Spt6-FACT balance on chromatin. Taken together, these studies reveal previously unknown regulation between histone chaperones that is critical for their essential in vivo functions.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica/genética , Chaperonas de Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/genética , Mutación , Nucleosomas/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
18.
Genome Biol ; 22(1): 55, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33526072

RESUMEN

A bottleneck in high-throughput functional genomics experiments is identifying the most important genes and their relevant functions from a list of gene hits. Gene Ontology (GO) enrichment methods provide insight at the gene set level. Here, we introduce GeneWalk ( github.com/churchmanlab/genewalk ) that identifies individual genes and their relevant functions critical for the experimental setting under examination. After the automatic assembly of an experiment-specific gene regulatory network, GeneWalk uses representation learning to quantify the similarity between vector representations of each gene and its GO annotations, yielding annotation significance scores that reflect the experimental context. By performing gene- and condition-specific functional analysis, GeneWalk converts a list of genes into data-driven hypotheses.


Asunto(s)
Bases de Datos Genéticas , Redes Reguladoras de Genes , Animales , Biflavonoides , Encéfalo , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , RNA-Seq , Transcriptoma
19.
Nat Protoc ; 16(3): 1343-1375, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514943

RESUMEN

During maturation, eukaryotic precursor RNAs undergo processing events including intron splicing, 3'-end cleavage, and polyadenylation. Here we describe nanopore analysis of co-transcriptional processing (nano-COP), a method for probing the timing and patterns of RNA processing. An extension of native elongating transcript sequencing, which quantifies transcription genome-wide through short-read sequencing of nascent RNA 3' ends, nano-COP uses long-read nascent RNA sequencing to observe global patterns of RNA processing. First, nascent RNA is stringently purified through a combination of 4-thiouridine metabolic labeling and cellular fractionation. In contrast to cDNA or short-read-based approaches relying on reverse transcription or amplification, the sample is sequenced directly through nanopores to reveal the native context of nascent RNA. nano-COP identifies both active transcription sites and splice isoforms of single RNA molecules during synthesis, providing insight into patterns of intron removal and the physical coupling between transcription and splicing. The nano-COP protocol yields data within 3 d.


Asunto(s)
Modificación Traduccional de las Proteínas/fisiología , Precursores del ARN/análisis , Análisis de Secuencia de ARN/métodos , Animales , Exones/genética , Humanos , Intrones/genética , Modificación Traduccional de las Proteínas/genética , ARN/genética , ARN Polimerasa II/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , Empalme del ARN/genética , ARN Mensajero/genética , Transcripción Genética/genética
20.
J Biol Chem ; 295(33): 11435-11454, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32518159

RESUMEN

mRNA levels are determined by the balance between mRNA synthesis and decay. Protein factors that mediate both processes, including the 5'-3' exonuclease Xrn1, are responsible for a cross-talk between the two processes that buffers steady-state mRNA levels. However, the roles of these proteins in transcription remain elusive and controversial. Applying native elongating transcript sequencing (NET-seq) to yeast cells, we show that Xrn1 functions mainly as a transcriptional activator and that its disruption manifests as a reduction of RNA polymerase II (Pol II) occupancy downstream of transcription start sites. By combining our sequencing data and mathematical modeling of transcription, we found that Xrn1 modulates transcription initiation and elongation of its target genes. Furthermore, Pol II occupancy markedly increased near cleavage and polyadenylation sites in xrn1Δ cells, whereas its activity decreased, a characteristic feature of backtracked Pol II. We also provide indirect evidence that Xrn1 is involved in transcription termination downstream of polyadenylation sites. We noted that two additional decay factors, Dhh1 and Lsm1, seem to function similarly to Xrn1 in transcription, perhaps as a complex, and that the decay factors Ccr4 and Rpb4 also perturb transcription in other ways. Interestingly, the decay factors could differentiate between SAGA- and TFIID-dominated promoters. These two classes of genes responded differently to XRN1 deletion in mRNA synthesis and were differentially regulated by mRNA decay pathways, raising the possibility that one distinction between these two gene classes lies in the mechanisms that balance mRNA synthesis with mRNA decay.


Asunto(s)
Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exorribonucleasas/genética , Eliminación de Gen , ARN Polimerasa II/genética , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sitio de Iniciación de la Transcripción , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA